Seismic Structural Interpretation and Analysis Workshop

Good seismic structural interpretation and analysis is required in everything from exploration risking to reservoir management. These examples and elements are discussed during the course.

Description

The course addresses interpretation of 2-D and 3-D seismic reflection data for unraveling the geometry and kinematic evolution of crustal structures, principally in sedimentary rocks. Topics include understanding how structures manifest themselves in seismic data and approaches to effective interpretation and kinematic analysis. Structural systems addressed include extensional, fold and thrust belts, salt tectonics and inversion. Applied topics include interpretation and analysis approaches, determination of geologic and basin history, fault system analysis, fault permeability structure and geomechanical evaluations, such as in situ stress determination and application to induced seismicity risking. Practical exercises are based on global seismic datasets and are reinforced by active in-class discussion.

Duration and Logistics

Classroom version: A 5-day classroom course, comprising a mix of lectures (40%), analysis of case studies (30%) and integrated exercises (30%). The manual will be provided in digital format and participants will be required to bring a laptop or tablet computer to follow the lectures and exercises.

Virtual version: Ten 3.5-hour interactive online sessions presented over 10 days (mornings in North America and afternoons in Europe). A digital manual and exercise materials will be distributed to participants before the course. Some reading and several exercises are to be completed by participants off-line.

Level and Audience

Fundamental. The course is intended for geoscientists who wish to strengthen their seismic interpretation and analysis skills by applying key interpretation techniques and strategies to a wide range of structural types and application goals.

Objectives

You will learn to:

  1. Understand the manifestation of 3-D structures in reflection seismic data.
  2. Develop effective structural interpretation perception – learning to think ‘kinemechanically’.
  3. Generate interpretations with geometric admissibility and kinematic compatibility.
  4. Understand imaging scale, artefacts and interpretation pitfalls.
  5. Gain experience in interpretation and analysis in all structural regimes.
  6. Understand how faults form, grow, interact, reactivate and impact fluid flow.
  7. Gain an introductory understanding of geomechanics as applied to interpretation.
  8. Become acquainted with fault stress analysis and fault seal risking.

Course Content

Agenda

Introduction to interpretation

  • Topics of applied seismic interpretation and application
  • The components of a complete interpretation
  • Introduction to mechanics of deformation
  • Applying 'kinemechanical thinking' to interpretation
  • Review of faults, folds and strain
  • Recognizing detachments and ductile lithologic units
  • Determining the timing of structural movement
  • Interpreting lithologic units and mechanical stratigraphy
  • Recognizing unconformities and basic sediment depositional geometries

Reflection seismic data and interpretation pitfalls

  • Understanding the basics of reflection imaging and processing
  • Understanding normal-incident ray-paths and basic reflector geometries
  • Understanding stacking vs time migration
  • Understanding multiples and refractions
  • Understanding seismic velocity, velocity effects and depth conversion

Understanding stress and geomechanics for interpretation

  • Understanding crustal stress and its representation
  • Andersonian faulting theory
  • Mohr-Coulomb failure analysis and rock strength
  • Effective stress and influence of pore pressure
  • Sliding friction and the Coulomb failure function
  • Critically stressed fault hypothesis
  • Interpreting stress – what can be calculated and what must be modelled and/or assumed
  • Interpreting fractures and stress indicators from image logs

Extensional faults and systems

  • Development and evolution of normal faults, displacement and linkage
  • Fault systems and how they evolve over geologic time
  • Mechanical stratigraphy controls
  • Folds associated with extension
  • Using fold shape to discern fault geometry and evolution
  • Fault system reactivation and obliquity
  • Rift system anatomy and controls on 2-D and 3-D architecture
  • Controls on subsidence and evolution systematics
  • Fault stress analysis

Rift systems

  • Anatomy and geometry
  • Basin development and subsidence

Basement-rooted compression and inversion

  • Anatomy and geometry
  • Structural hierarchy
  • Geometry and kinematics of oil-field-scale structures

Basement-detached compression

  • Critical wedge mechanics
  • System geometry and kinematic evolution
  • Geometry and kinematics of basement-detached compressional structures
  • Imbricates, wedges and duplex systems and the role of mechanical stratigraphy
  • Structurally linked systems and toe-thrust belts
  • Spatiotemporal evolution of thrust systems
  • 3-D geometry of thrust structures and faults

2-D geometric analysis and restoration

  • Restoration and analysis workflows
  • Rock deformation approximations and line-length restoration
  • QCing interpretations by visual inspection
  • Impact of critical assumptions
  • Working with multiple hypotheses
  • Utility of geometric analysis and restoration

Salt-dominated structural systems

  • Basic principles of salt mechanics
  • Triggers of salt-system deformation and mobility
  • Mechanisms controls on salt diapir rise and collapse
  • Geophysical properties of salt and surrounding sediments
  • Salt-surface reflectivity, migration and velocity considerations
  • Methods of imaging salt structures
  • Criteria for interpretation of the top and base of salt

Tutor(s)

Peter Hennings: Consulting Geologist and Research Scientist and Lecturer, UT Austin, Texas

Similar events

Learn workflows to apply sequence stratigraphic concepts to the interpretation of core, well log, seismic and outcrop data.

More Information

Learn how to interpret faults and critically assess their impact on exploration traps and complex reservoir development.

More Information

A comprehensive examination of seismic stratigraphy to aid exploration and development of plays in mixed carbonate-siliciclastic systems, using examples from the Permian Basin.

More Information

Become a more effective member of a multi-disciplinary team by developing a solid understanding of engineering concepts and terminology.

More Information

This course focuses on large scale rules, risks, uncertainties, strategies and workflows to aid in de-risking carbonate exploration.

More Information

Learn core handling and core description techniques and how to integrate core-based facies analysis into reservoir characterization of siliceous and calcareous mudstones, muddy sandstones, and sandstones.

More Information

Study world-class outcrops displaying sandbody architecture in a variety of stratigraphic and structural settings to improve understanding of reservoir geometry and fluid flow characteristics.

More Information

Examine superb outcrops to develop better understanding of clastic shoreline and shelf systems and apply sedimentology and sequence stratigraphic concepts to build depositional models and predict facies distributions. 

More Information

Develop the skills necessary to identify and predict new prospects and better subdivide reservoirs by applying the concepts of sequence stratigraphy.

More Information

This course examines the structural geology of salt basins, the interactions between salt and surrounding strata, and includes interpretation of seismic data in salt settings.

More Information

Superb outcrops illustrate the range of depositional facies and tectonics that influence the style and intensity of faulting, folding and fracture development.

More Information

Learn the language of reservoir engineers, as well as what you should expect of them and how you can help them.

More Information

This software-independent course examines the reasons why reservoir models often disappoint and offers solutions for building more efficient, fit-for-purpose models.

More Information

Establishes the value of seismic data and provides a solid grounding in seismic interpretation techniques for early-career geoscientists, technical support staff, engineers and managers.

More Information

An overview of seismic technologies that might be used effectively along with geological and engineering data to solve exploration and production problems.

More Information

Creativity and innovation are learnable skills: lectures, discussions and exercises develop creative thinking techniques, models and frameworks that can be applied to oil and gas industry situations.

More Information

Application of the techniques described has consistently provided new interpretations that have led to new field discoveries and/or identification of stratigraphic compartments within existing fields.

More Information

Learn to use play fairway mapping and petroleum system analysis to identify and high-grade potential plays and prospects.

More Information

Learn to use petroleum systems analysis (regional geology, geochemistry and petroleum systems modeling) to evaluate unconventional/resource play reservoirs.

More Information

Of particular interest to individuals evaluating the pre-salt of Brazil and West Africa but will appeal to all geoscientists who wish to expand their knowledge of non-marine  carbonate reservoirs.

More Information

A course that will guide participants through the lifecycle of a CCUS project with emphasis on key concepts, processes, and workflows of the CCUS industry.

More Information

This course provides an analysis-level treatment of fault geometry, characterization of seal effectiveness, and assessment of rupture hazard with application to hydrocarbon exploration, reservoir development and management, fluid pressure containment analysis for CCS, and induced seismicity hazard assessment. 

More Information

The course investigates world-class outcrops to introduce engineers to a wide spectrum of stratigraphic and structural features commonly found in exploration and production.

More Information

A field course focusing on the analysis of deepwater lithofacies, stratal geometries and key stratigraphic surfaces.

More Information

The course aims to improve the understanding of uncertainties in the mapping of complex fault zones and the processes that create potential seals and compartmentalisation in reservoirs in the subsurface for oil and gas as well as CO2.

More Information

A course aimed at women working in the energy industry as geoscientists, with a technical focus on salt tectonics.

More Information

This course will offer geoscientists an understanding of how they can use and adapt their expertise gained in the oil and gas industry to the growing geothermal industry.

More Information

Learn the theory and techniques required to assess trap and seal integrity in hydrocarbon subsurface reservoirs and carbon storage complexes.

More Information

Gain critical insights into the nature and behavior of thick evaporite sequences and learn to interpret salt structures in the subsurface.

More Information

Explore natural deformation at outcrop and tie to subsurface data to aid in fracture prediction in unconventional and conventional reservoirs.

More Information

Understand depth migrated seismic data and connect these data to geological settings for prospect evaluation and generation.

More Information

A comprehensive approach to fractures, teaching how to describe, measure and analyze them and to evaluate their impact on permeability in conventional and unconventional hydrocarbon reservoirs, and for EOR, CO2 sequestration and geothermal energy applications.

More Information

An in-depth introduction to clastic reservoirs, with a focus on stratigraphic and structural heterogeneities that impact reservoir prediction and production.

More Information

Learn to integrate all available data to develop an understanding of reservoir architecture and create fit-for-purpose reservoir maps for exploration, development and production projects.

More Information

Learn how to plan successful onshore seismic acquisition projects and how to work with contractors to execute these projects.

More Information

Understand how to plan successful offshore seismic acquisition projects and how to work with contractors to execute these projects. 

More Information

Explains the factors that control mudrock reservoir quality and presents practical methods to evaluate reservoir heterogeneity

More Information

A concise overview of the basics of sedimentology, stratigraphy and structure of clastic units; and of the environments of deposition of clastic sediments.

More Information

A course that introduces the fundamentals of geomechanics followed by an in-depth look at the relevance to unconventionals especially how geomechanics relates to the effect of fabric and heterogeneity.

More Information

This course classifies unconventional reservoirs from a petroleum systems perspective and reinforces the concepts of depositional controls on reservoir architecture and fractures.

More Information

This course will introduce the fundamentals of land seismic acquisition including receiver types and their spectrum indication.

More Information

Carbonate systems present different seismic responses and geobody geometries to clastic systems; this course examines the characteristics of seismic imaging of carbonate systems.

More Information

This course provides an introduction to siliciclastic facies in all aqueous settings focusing on sand deposition for application to conventional reservoirs.

More Information

This course provides a practical introduction to data science and its application in the E&P domain.

More Information

This class provides an overview of seismic wave propagation, discusses important issues related to seismic data acquisition and imaging, and introduces students to practical seismic interpretation workflows including mapping techniques.

More Information

The course will examine the depositional facies and stratal geometries developed in deepwater slope and channel environments.

More Information

This field course will use outcrops from the Cretaceous and Jurassic of Utah to analyze some of the major challenges facing the storage of CO2 in subsurface formations.

More Information