Geomechanics for Unconventional Developments

A course that introduces the fundamentals of geomechanics followed by an in-depth look at the relevance to unconventionals especially how geomechanics relates to the effect of fabric and heterogeneity.

Description

The course starts with an introduction to geomechanics fundamentals and then aspects relevant to unconventionals are developed, especially as they relate to the effect of fabric and heterogeneity. “Common knowledge” is challenged and popular procedures are presented in the light of geomechanics fundamentals and concepts. Recent topics such as cube developments and frac hits are discussed. This is an in-depth but engaging training course.

Tutor(s)

Marisela Sanchez-Nagel and/or Neal Nagel: OilField Geomechanics LLC

Course Content

Part 1: Geomechanics Fundamentals
Module 0. Introduction to Unconventional Geomechanics

  • A few words about Oilfield Geomechanics
  • What is geomechanics? Definitions, history, relevance

Modules 1 - 2. Principles of stress and strain with field stress measurements

  • Basic of stress-strain and Mohr circles - applications to natural fractures
  • Effective stress concepts, role of pore pressure
  • Field stress variations, structural effects
  • Stresses around boreholes
  • Stress determination

Module 3. Pore pressure evaluation

  • Basic concepts and causes of overpressure
  • Pore pressure analyses - Eaton, Bowers', NCT, effective stress methods
  • Analysis workflow
  • Challenges in Unconventional, field examples

Modules 4 - 5. Mechanical rock behavior

  • Mechanical properties, elasticity, plasticity, poroelasticity, viscoelasticity
  • Failure in rocks, failure criteria
  • Influence of faults and fracture, anisotropy
  • Laboratory testing, measurements, interpretation
  • Use of logs for mechanical properties, calibration, correlations

Module 6. Geomechanical modeling and workflows

  • Concepts and tools
  • 1D, 2D and 3D models; when and where appropriate
  • Geomechanics workflows in Unconventionals

Part 2: Geomechanics for Unconventional Developments

Modules 7-8. Hydraulic fracturing fundamentals

  • Basic, objectives, parameters
  • Frac containment, net pressure
  • Injection testing, DFITs
  • Horizontal wells and perforating
  • Proppants – 100 mesh and proppant transport
  • Fracturing fluids
  • Role of natural fractures
  • Injection zone selection effects

Module 9. Stress Shadows for single frac, multi-stage and multi-well

  • Mechanics of stress shadows
  • Effect on multi stages and clusters
  • Multi-well stress shadows
  • Tip shear stresses, Modeling examples Module

10. Rock fabric characterization

  • Description and quantification of rock fabric attributes – cores
  • Mechanical behavior, hydraulic behavior, testing in unconventionals
  • Stresses - critically stress fractures and hydraulic conductivity
  • Geometry and spatial occurrence, DFN models
  • Examples of evaluation in unconventional plays

Module 11. Shale geomechanics

  • Unconventional shale plays – shale types – challenges, critical issues
  • Geological scenarios for completions
  • Geomechanics of interfaces – HF interaction with interfaces, effect of fracture toughness
  • Shale properties static and dynamics examples from different plays – elastic parameters, time dependency, frictional properties
  • Myths to debunk – brittleness, complexity, SRV and microseismic, sand volume per lateral length

Module 12. Hydraulic fractures (HFs) and natural fractures (NFs) with operational effects

  • HFs propagation with NFs – effect of NF orientation
  • Dual HF propagating in a fractured media
  • Pressure Diffusion – coupled effects – stimulation benefits
  • Interaction HF – NF - crossing rules
  • Influence of NF characteristics – Dense vs sparse DFN, stress anisotropy, NF connectivity, parametric studies, with modeling examples
  • Influence of operational parameters, effects of fluid viscosity, injection rates – injection time
  • Influence of the stress field and in-situ pore pressure on HF behavior
  • Microseismicity response with anisotropic stresses – dry and wet MS events. Effect of initial aperture of the NFs

Module 13. Depletion effects and refracs

  • Depletion effects on HFs, depletion and in situ stresses
  • Parent -child evaluations, cluster efficiency, drainage volume
  • Frac hits (fracture Driven Interactions -FDIs) – types
  • Microseismic depletion delineation, cube evaluations

Module 14. Multi-well completions

  • Zipper fracs, stress perturbations, induced shear around zipper fracs
  • Interaction of HFs, overlapping HFs, models
  • Zipper fracs stress shadows
  • Effect of multiple well completions in fractured rock mass – sheared fabric – friction angle effect, geometry of zipper fracs. Effect on fabric stimulation
  • Sheared length, pressure diffusion

Module 15. HF monitoring and models (extra session as time permits)

Temperature logs, strengths and weaknesses, procedures. Effect of wellbore and completion
RA logging procedures, strength and weaknesses, tracer applications
Microseismic monitoring – MS as a geomechanics issue. Events, field data, MS imaging, passive seismology, triggered or induced seismicity, array design, surface vs downhole, source mechanisms, SRV from MS and drainage volume
Tiltmeters- direct fracture monitoring, measurements, patterns, cases
DAS/DTS basics, production estimations, cluster efficiency, integrated analysis
HF Models - advanced models fundamentals, input data, 2D models, pseudo (planar) 3D, Cell/Grid based models lumped pseudo 3D, Fully 3D, HF reservoir simulator

Duration and Logistics

Classroom version: 3 days; a mix of lectures (80%) and hands-on exercises and/or examples (20%). The manual will be provided in digital format and participants will be required to bring a laptop or tablet computer to follow the lectures and exercises.

Virtual version: Five 4-hour interactive online sessions presented over 5 days (morning sessions in North America, afternoon sessions in Europe). A digital manual and exercise materials will be distributed to participants before the course.

Interactive questioning and possibly breakout sessions will be utilized to reinforce learnings.

Level and Audience

Advanced. Intended for geoscientists, reservoir and completion engineers and petrophysicists who wish to understand how geomechanics can help them effectively develop their reservoirs.

Objectives

You will learn to:

  1. Understand the fundamentals of geomechanics including stress and strain, pore pressure evaluation, mechanical rock behavior and geomechanical models.
  2. Gain an understanding of conventional fracturing models in unconventional developments and the associated workflow.
  3. Describe the properties of naturally fractured reservoirs including their influence on drilling, stimulation and production.
  4. Perform reservoir quality evaluations including the assessment of poroperm, natural fractures, pressures and mechanical properties as quality indicators.
  5. Characterize shale properties including shale types, brittle versus ductile behavior and geological scenarios for completions.
  6. Assess the influence of the stress field and in-situ pore pressure on hydraulic fracture behavior.
  7. Assess the microseismic response with anisotropic stresses and the use of numerical models for interpretation and characterization.
  8. Characterize the effects of multiple well completions in a fractured rock mass.
  9. Assess the types of hydraulic fracture monitoring including microseismic monitoring.

Similar events

Learn workflows to apply sequence stratigraphic concepts to the interpretation of core, well log, seismic and outcrop data.

More Information

Learn how to interpret faults and critically assess their impact on exploration traps and complex reservoir development.

More Information

A comprehensive examination of seismic stratigraphy to aid exploration and development of plays in mixed carbonate-siliciclastic systems, using examples from the Permian Basin.

More Information

Become a more effective member of a multi-disciplinary team by developing a solid understanding of engineering concepts and terminology.

More Information

Good seismic structural interpretation and analysis is required in everything from exploration risking to reservoir management. These examples and elements are discussed during the course.

More Information

This course focuses on large scale rules, risks, uncertainties, strategies and workflows to aid in de-risking carbonate exploration.

More Information

Learn core handling and core description techniques and how to integrate core-based facies analysis into reservoir characterization of siliceous and calcareous mudstones, muddy sandstones, and sandstones.

More Information

Study world-class outcrops displaying sandbody architecture in a variety of stratigraphic and structural settings to improve understanding of reservoir geometry and fluid flow characteristics.

More Information

Examine superb outcrops to develop better understanding of clastic shoreline and shelf systems and apply sedimentology and sequence stratigraphic concepts to build depositional models and predict facies distributions. 

More Information

Develop the skills necessary to identify and predict new prospects and better subdivide reservoirs by applying the concepts of sequence stratigraphy.

More Information

This course examines the structural geology of salt basins, the interactions between salt and surrounding strata, and includes interpretation of seismic data in salt settings.

More Information

Superb outcrops illustrate the range of depositional facies and tectonics that influence the style and intensity of faulting, folding and fracture development.

More Information

Learn the language of reservoir engineers, as well as what you should expect of them and how you can help them.

More Information

This software-independent course examines the reasons why reservoir models often disappoint and offers solutions for building more efficient, fit-for-purpose models.

More Information

Establishes the value of seismic data and provides a solid grounding in seismic interpretation techniques for early-career geoscientists, technical support staff, engineers and managers.

More Information

An overview of seismic technologies that might be used effectively along with geological and engineering data to solve exploration and production problems.

More Information

Creativity and innovation are learnable skills: lectures, discussions and exercises develop creative thinking techniques, models and frameworks that can be applied to oil and gas industry situations.

More Information

Application of the techniques described has consistently provided new interpretations that have led to new field discoveries and/or identification of stratigraphic compartments within existing fields.

More Information

Learn to use play fairway mapping and petroleum system analysis to identify and high-grade potential plays and prospects.

More Information

Learn to use petroleum systems analysis (regional geology, geochemistry and petroleum systems modeling) to evaluate unconventional/resource play reservoirs.

More Information

Of particular interest to individuals evaluating the pre-salt of Brazil and West Africa but will appeal to all geoscientists who wish to expand their knowledge of non-marine  carbonate reservoirs.

More Information

Examine well-exposed New Mexico outcrops to appreciate the variation in fracture types and the wide range of impacts they can have on hydrocarbon reservoirs.

More Information

A course that will guide participants through the lifecycle of a CCUS project with emphasis on key concepts, processes, and workflows of the CCUS industry.

More Information

This course provides an analysis-level treatment of fault geometry, characterization of seal effectiveness, and assessment of rupture hazard with application to hydrocarbon exploration, reservoir development and management, fluid pressure containment analysis for CCS, and induced seismicity hazard assessment. 

More Information

The course investigates world-class outcrops to introduce engineers to a wide spectrum of stratigraphic and structural features commonly found in exploration and production.

More Information

A field course focusing on the analysis of deepwater lithofacies, stratal geometries and key stratigraphic surfaces.

More Information

The course aims to improve the understanding of uncertainties in the mapping of complex fault zones and the processes that create potential seals and compartmentalisation in reservoirs in the subsurface for oil and gas as well as CO2.

More Information

A course aimed at women working in the energy industry as geoscientists, with a technical focus on salt tectonics.

More Information

This course will offer geoscientists an understanding of how they can use and adapt their expertise gained in the oil and gas industry to the growing geothermal industry.

More Information

Learn the theory and techniques required to assess trap and seal integrity in hydrocarbon subsurface reservoirs and carbon storage complexes.

More Information

Gain critical insights into the nature and behavior of thick evaporite sequences and learn to interpret salt structures in the subsurface.

More Information

Explore natural deformation at outcrop and tie to subsurface data to aid in fracture prediction in unconventional and conventional reservoirs.

More Information

Understand depth migrated seismic data and connect these data to geological settings for prospect evaluation and generation.

More Information

A comprehensive approach to fractures, teaching how to describe, measure and analyze them and to evaluate their impact on permeability in conventional and unconventional hydrocarbon reservoirs, and for EOR, CO2 sequestration and geothermal energy applications.

More Information

An in-depth introduction to clastic reservoirs, with a focus on stratigraphic and structural heterogeneities that impact reservoir prediction and production.

More Information

Learn to integrate all available data to develop an understanding of reservoir architecture and create fit-for-purpose reservoir maps for exploration, development and production projects.

More Information

Learn how to plan successful onshore seismic acquisition projects and how to work with contractors to execute these projects.

More Information

Understand how to plan successful offshore seismic acquisition projects and how to work with contractors to execute these projects. 

More Information

Explains the factors that control mudrock reservoir quality and presents practical methods to evaluate reservoir heterogeneity

More Information

A concise overview of the basics of sedimentology, stratigraphy and structure of clastic units; and of the environments of deposition of clastic sediments.

More Information

This course classifies unconventional reservoirs from a petroleum systems perspective and reinforces the concepts of depositional controls on reservoir architecture and fractures.

More Information

This course will introduce the fundamentals of land seismic acquisition including receiver types and their spectrum indication.

More Information

Carbonate systems present different seismic responses and geobody geometries to clastic systems; this course examines the characteristics of seismic imaging of carbonate systems.

More Information

This course provides an introduction to siliciclastic facies in all aqueous settings focusing on sand deposition for application to conventional reservoirs.

More Information

This course provides a practical introduction to data science and its application in the E&P domain.

More Information

This class provides an overview of seismic wave propagation, discusses important issues related to seismic data acquisition and imaging, and introduces students to practical seismic interpretation workflows including mapping techniques.

More Information

The course will examine the depositional facies and stratal geometries developed in deepwater slope and channel environments.

More Information

This field course will use outcrops from the Cretaceous and Jurassic of Utah to analyze some of the major challenges facing the storage of CO2 in subsurface formations.

More Information