Reservoir Engineering for Geoscientists

Learn the language of reservoir engineers, as well as what you should expect of them and how you can help them.

Description

The course examines reservoir engineering processes, techniques and terminology, particularly those that interface with geoscience activities. The material is structured around the three-part process of building a reservoir model: (1) building a static model to identify the main flow units, (2) developing a dynamic model to predict fluid flow in the reservoir, and (3) implementing a life-of-field reservoir management plan to maximize economic recovery. Numerous examples illustrate the use of subsurface data and the techniques employed during the construction of a reservoir model. The focus is on the principles rather than the detailed work of the reservoir engineer; the use of complex mathematics is avoided.

Duration and Logistics

Classroom version: 5 days; a mix of classroom lectures (60%), case studies (20%) and exercises (20%). The manual will be provided in digital format and participants will be required to bring a laptop or tablet computer to follow the lectures and exercises.

Virtual version: Five 4-hour interactive online sessions presented over 5 days (mornings in North America and afternoons in Europe), including a mix of lectures (60%), case studies (20%) and exercises (20%). A digital manual and hard-copy exercise materials will be distributed to participants before the course.

Level and Audience

Fundamental. The course is aimed at geoscientists, petrophysicists and others who interface with reservoir engineers on a regular basis, as well as anyone who wishes to obtain an understanding of reservoir engineering techniques.

Objectives

You will learn to:

  1. Effectively interact with reservoir engineering colleagues.
  2. Interpret original fluid contacts, understand saturation vs height relationships and estimate original hydrocarbon in-place volumes for oil and gas reservoirs.
  3. Differentiate the physical and chemical properties of hydrocarbons and their description through phase diagrams.
  4. Recognize the strengths and weaknesses of well tests and their analysis.
  5. Analyze production performance and describe production enhancement techniques.
  6. Contrast static and dynamic reservoir models and assess the merits of reservoir numerical simulation.
  7. Assess the value of reservoir management for forecasting production profiles and maximizing economic hydrocarbon recovery from a producing field over the complete life cycle.
  8. Examine the controls on fluid flow in the reservoir and reservoir drive mechanisms.

Course Content

Introduction

Basic Reservoir Rock and Fluid Description

  • Controls on fluid flow in the reservoir
    • Rock permeability, and relationship with porosity.
    • Reservoir zonation, Darcy's Law and impact of permeability contrasts.
  • Defining fluid contacts and estimating volumetrics
    • Basic reservoir volumetrics.
    • Defining fluid contacts; RFT pressure measurements and Pressure vs Depth relationships Capillary pressures and saturation-height relationships.
  • Reservoir fluid properties
    • Fluid sampling.
    • Analysis of fluid samples - Chemical properties of hydrocarbons, Physical properties of hydrocarbons and Phase diagrams.
    • Making use of the PVT report.
  • Well test analysis
    • Uses of well testing.
    • Planning a well test.
    • Well testing operations.
    • Well test analysis – determining kh, skin, PI, boundary effects. Analysis principles, analysis techniques (semi-log and log-log analysis), the components of total skin and special test types.

Dynamic Behaviour of Reservoir Fluids

  • Material balance and fluid displacement
    • Drive mechanisms; depletion, gas cap drive and water drive.
    • Material balance for oil reservoirs.
    • Material balance for gas reservoirs.
    • Fluid displacement on a macroscopic scale; sweep efficiency.
    • Fluid displacement on a microscopic scale; relative permeability.
    • Estimating recovery factors.
    • Diffuse and segregated flow regimes.
    • Buckley-Leverett displacement theory.
  • Dynamic well performance
    • The inflow performance relationship.
    • Tubing performance curves.
    • Artificial lift.
    • Coning and cusping.
    • Well completions.
    • Horizontal wells.
    • Well stimulation; fracturing and acidization.
  • Reservoir simulation
    • Gridding.
    • Simulation principles.
    • Input, output and visualisation.
    • Upscaling static and dynamic model properties.

Measuring Reservoir Performance and Reservoir Management

  • Reservoir monitoring
    • Overview of reservoir management.
    • Monitoring tools - pressure, PLT, TDT, RFT, MDT, XPT pressure data, production and injection data.
    • Well interventions and workovers.
  • Production
    • Field analogues.
    • Decline curve analysis.
    • Analytical models.
    • Reservoir simulation and history matching.
    • Probabilistic production forecasting for reserves reporting.
  • Enhanced oil recovery techniques
    • Defining the target oil.
    • EOR techniques.
    • Steam and fire flooding.
    • Miscible gas displacement.
    • Immiscible gas displacement.
    • Novel techniques.

Tutor(s)

Mark Cook: Associate Reservoir Engineer at TRACS International Consultancy and Independent Engineer at Delta-T Energy Consultancy.

Similar events

Learn workflows to apply sequence stratigraphic concepts to the interpretation of core, well log, seismic and outcrop data.

More Information

Learn how to interpret faults and critically assess their impact on exploration traps and complex reservoir development.

More Information

A comprehensive examination of seismic stratigraphy to aid exploration and development of plays in mixed carbonate-siliciclastic systems, using examples from the Permian Basin.

More Information

Become a more effective member of a multi-disciplinary team by developing a solid understanding of engineering concepts and terminology.

More Information

Good seismic structural interpretation and analysis is required in everything from exploration risking to reservoir management. These examples and elements are discussed during the course.

More Information

This course focuses on large scale rules, risks, uncertainties, strategies and workflows to aid in de-risking carbonate exploration.

More Information

Learn core handling and core description techniques and how to integrate core-based facies analysis into reservoir characterization of siliceous and calcareous mudstones, muddy sandstones, and sandstones.

More Information

Study world-class outcrops displaying sandbody architecture in a variety of stratigraphic and structural settings to improve understanding of reservoir geometry and fluid flow characteristics.

More Information

Examine superb outcrops to develop better understanding of clastic shoreline and shelf systems and apply sedimentology and sequence stratigraphic concepts to build depositional models and predict facies distributions. 

More Information

Develop the skills necessary to identify and predict new prospects and better subdivide reservoirs by applying the concepts of sequence stratigraphy.

More Information

This course examines the structural geology of salt basins, the interactions between salt and surrounding strata, and includes interpretation of seismic data in salt settings.

More Information

Superb outcrops illustrate the range of depositional facies and tectonics that influence the style and intensity of faulting, folding and fracture development.

More Information

This software-independent course examines the reasons why reservoir models often disappoint and offers solutions for building more efficient, fit-for-purpose models.

More Information

Establishes the value of seismic data and provides a solid grounding in seismic interpretation techniques for early-career geoscientists, technical support staff, engineers and managers.

More Information

An overview of seismic technologies that might be used effectively along with geological and engineering data to solve exploration and production problems.

More Information

Creativity and innovation are learnable skills: lectures, discussions and exercises develop creative thinking techniques, models and frameworks that can be applied to oil and gas industry situations.

More Information

Application of the techniques described has consistently provided new interpretations that have led to new field discoveries and/or identification of stratigraphic compartments within existing fields.

More Information

Learn to use play fairway mapping and petroleum system analysis to identify and high-grade potential plays and prospects.

More Information

Learn to use petroleum systems analysis (regional geology, geochemistry and petroleum systems modeling) to evaluate unconventional/resource play reservoirs.

More Information

Of particular interest to individuals evaluating the pre-salt of Brazil and West Africa but will appeal to all geoscientists who wish to expand their knowledge of non-marine  carbonate reservoirs.

More Information

A course that will guide participants through the lifecycle of a CCUS project with emphasis on key concepts, processes, and workflows of the CCUS industry.

More Information

This course provides an analysis-level treatment of fault geometry, characterization of seal effectiveness, and assessment of rupture hazard with application to hydrocarbon exploration, reservoir development and management, fluid pressure containment analysis for CCS, and induced seismicity hazard assessment. 

More Information

The course investigates world-class outcrops to introduce engineers to a wide spectrum of stratigraphic and structural features commonly found in exploration and production.

More Information

A field course focusing on the analysis of deepwater lithofacies, stratal geometries and key stratigraphic surfaces.

More Information

The course aims to improve the understanding of uncertainties in the mapping of complex fault zones and the processes that create potential seals and compartmentalisation in reservoirs in the subsurface for oil and gas as well as CO2.

More Information

A course aimed at women working in the energy industry as geoscientists, with a technical focus on salt tectonics.

More Information

This course will offer geoscientists an understanding of how they can use and adapt their expertise gained in the oil and gas industry to the growing geothermal industry.

More Information

Learn the theory and techniques required to assess trap and seal integrity in hydrocarbon subsurface reservoirs and carbon storage complexes.

More Information

Gain critical insights into the nature and behavior of thick evaporite sequences and learn to interpret salt structures in the subsurface.

More Information

Explore natural deformation at outcrop and tie to subsurface data to aid in fracture prediction in unconventional and conventional reservoirs.

More Information

Understand depth migrated seismic data and connect these data to geological settings for prospect evaluation and generation.

More Information

A comprehensive approach to fractures, teaching how to describe, measure and analyze them and to evaluate their impact on permeability in conventional and unconventional hydrocarbon reservoirs, and for EOR, CO2 sequestration and geothermal energy applications.

More Information

An in-depth introduction to clastic reservoirs, with a focus on stratigraphic and structural heterogeneities that impact reservoir prediction and production.

More Information

Learn to integrate all available data to develop an understanding of reservoir architecture and create fit-for-purpose reservoir maps for exploration, development and production projects.

More Information

Learn how to plan successful onshore seismic acquisition projects and how to work with contractors to execute these projects.

More Information

Understand how to plan successful offshore seismic acquisition projects and how to work with contractors to execute these projects. 

More Information

Explains the factors that control mudrock reservoir quality and presents practical methods to evaluate reservoir heterogeneity

More Information

A concise overview of the basics of sedimentology, stratigraphy and structure of clastic units; and of the environments of deposition of clastic sediments.

More Information

A course that introduces the fundamentals of geomechanics followed by an in-depth look at the relevance to unconventionals especially how geomechanics relates to the effect of fabric and heterogeneity.

More Information

This course classifies unconventional reservoirs from a petroleum systems perspective and reinforces the concepts of depositional controls on reservoir architecture and fractures.

More Information

This course will introduce the fundamentals of land seismic acquisition including receiver types and their spectrum indication.

More Information

Carbonate systems present different seismic responses and geobody geometries to clastic systems; this course examines the characteristics of seismic imaging of carbonate systems.

More Information

This course provides an introduction to siliciclastic facies in all aqueous settings focusing on sand deposition for application to conventional reservoirs.

More Information

This course provides a practical introduction to data science and its application in the E&P domain.

More Information

This class provides an overview of seismic wave propagation, discusses important issues related to seismic data acquisition and imaging, and introduces students to practical seismic interpretation workflows including mapping techniques.

More Information

The course will examine the depositional facies and stratal geometries developed in deepwater slope and channel environments.

More Information

This field course will use outcrops from the Cretaceous and Jurassic of Utah to analyze some of the major challenges facing the storage of CO2 in subsurface formations.

More Information